If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+40t
We move all terms to the left:
20-(-16t^2+40t)=0
We get rid of parentheses
16t^2-40t+20=0
a = 16; b = -40; c = +20;
Δ = b2-4ac
Δ = -402-4·16·20
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{5}}{2*16}=\frac{40-8\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{5}}{2*16}=\frac{40+8\sqrt{5}}{32} $
| -25-6x=10-7x | | -39+8=6-(8p+2) | | -162-2x=8x+138 | | X^2-5x+12=2x+6 | | 2/3x-1/4=1/2x+1/6 | | 4x-1=x+29 | | 564=-6(-10x+16) | | 8(6x-3)=-360 | | 6y+4=-4(y+9) | | 4t^2+9t^2=9 | | 6x^-19x-7=0 | | 9y+2=-8(y+4) | | -350=5(7x-7) | | 3(u+4)-5u=2 | | -8w+6(w-3)=-2 | | 6(-5x-13=-228) | | 6(-5x-13=-228 | | 5(v+7)+4v=-10 | | 3x+54=3x | | 402=6(-9x-5) | | 10+3b=7b-2 | | 8x^2-600x+5625=0 | | -(5x/3)+1=21 | | d-4+2=3d+1d | | (5x+6)+79=180 | | 10-3k=7k | | -7(10x+11)=-637 | | -4n=4-6n | | (w−6)(8w+5)=0 | | -9h=3-10h | | 4x-18=x=3 | | 10+1x=5x-2 |